Russian Journal of Organic Chemistry, Vol. 37, No. 10, 2001, pp. 1503–1504. Translated from Zhurnal Organicheskoi Khimii, Vol. 37, No. 10, 2001, pp. 1572–1573.

Original Russian Text Copyright © 2001 by Chaikovskii, Skorokhodov, Filimonov.

SHORT COMMUNICATIONS

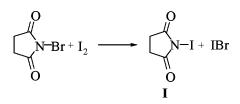
## Synthesis of N-Iodosuccinimide and Its Application in $H_2SO_4$ as Efficient Iodination Reagent for Deactivated Aromatic Compounds<sup>\*</sup>

V. K. Chaikovskii, V. I. Skorokhodov, and V. D. Filimonov

Tomsk Polytechnic University, Tomsk, 634004 Russia

Received February 15, 2001

*N*-Iodosuccinimide (I) found application in organic synthesis for iodination of ketones, aldehydes, and alkenes [1, 2]. For a long time it was presumed to be able to iodinate in organic solvents (alcohols, dioxane, acetonitrile, dichloromethane) only activated or slightly deactivated arenes (phenol ethers, iodobenzene etc.) [3–6]. The electrophilic activity of iododerivative I is sharply increased in  $CF_3SO_3H$ , and then it can efficiently iodinate nitrobenzene and a number of the other deactivated aromatic compounds [7].


We have formerly established that superactive electrophilic iodine capable to easily iodinate strongly deactivated arenes is formed in sulfuric acid from iodine monochloride and silver sulfate (reagent  $I^+$ ) [8, 9] or from 2,4,6,8-tetraiodo-2,4,6,8-tetraazabi-cyclo[3.3.0]octane-3,7-dione (tetraiodoglycoluril) [10].

On these grounds we presumed that iodide **I** should generate highly electrophilic iodine in sulfuric acid. Actually it turned out that iododerivative **I** in  $H_2SO_4$  readily iodinated nitrobenzene at 20°C within 20 min or at 0°C within 1.5 h affording 3-iodonitrobenzene (**II**) in 77–79% yield. The disadvantage of the method consists in the necessity to use a double excess of compound **I** as compared with the calculated amount. At equimolar reagents ratio a complete conversion of nitrobenzene into 3-iodonitrobenzene (**II**) takes 20 h at 20°C.

Thus the result obtained considerably extends the opportunities of iodide I application as iodinating reagent. However its wide application is limited since it is an expensive reagent. We attempted to find an efficient procedure for preparation of compound I to

make it more accessible. A usual preparation of compound **I** is from succinimide with the use of silver hydroxide and iodine [11]. Although the reaction product is of good quality (mp 200–201°C) the preparation procedure is multistage and expensive. The synthesis of compound **I** from the sodium salt of succinimide and iodine monochloride [12] provided the target compound of relatively low quality (mp 187–190°C). It is known that iodide **I** formed on long boiling (48 h) of *N*-bromosuccinimide with excess iodine in 1,2-dichloroethane [13].

We found that iododerivative **I** readily formed at heating equimolar amounts of *N*-bromosuccinimide and iodine in  $CCl_4$  to 40–55°C for 1 h in nearly quantitative yield.



Obviously the acceleration of reaction in going from solution in 1,2-dichloroethane to  $CCl_4$  is due to the known higher ability of the latter to generate free radicals that initiate the exchange process. It should be noted that reaction occurs readily only with unpurified *N*-bromosuccinimide that has light-yellow color. After recrystallization from water or nitromethane the colorless *N*-bromosuccinimide reacts with iodine only in boiling  $CCl_4$  and significantly slower (2 h) providing iodide I in low yield and of reduced properties. This fact indicates that occuluded bromine present as microcomponent plays a promotor role; however addition of a little molecular bromine (5–10 mol%) to the recrystallized *N*-bromosuccinimide hardly affects the course of the process.

<sup>&</sup>lt;sup>\*</sup> The study was carried out under financial support of the Russian Foundation for Basic Research (grant no. 00-03-32812a).

N-Iodosuccinimide (I). To a mixture of 5 g of N-bromosuccinimide of "pure" grade and 7.5 g of ground into a powder iodine was added 10 ml of  $CCl_4$ , and the mixture was stirred at 50°C for 30 min till it became tick. In the course of the process the reaction mixture became orange-brown due to formation of iodine monobromide,. Then was added 20 ml of CCl<sub>4</sub> more, and the reaction mixture was stirred at 40-50°C for another 30 min. The residue was filtered off and kept under fume hood to remove the formed iodine monobromide. Yield of compound I 6.3 g (98%), mp 192–195°C. For further purification the product was dissolved in 7 ml dioxane at boiling and was added 3.5 ml of  $CCl_4$ . The solution was cooled to 20°C, the precipitate was filtered off and dried in air, yield 5.1 g (80%), mp 200-201°C (mp 200-201°C [11]). Found, %: C 21.52; H 1.70; I 56.12. C<sub>4</sub>H<sub>4</sub>INO<sub>2</sub>. Calculated, %: C 21.33; H 1.78; I 56.44.

**3-Iodonitrobenzene (II).** To 2.25 g of iodide **I** was added 30 ml of 90%  $H_2SO_4$  preliminary cooled to 0–5°C, and the mixture was stirred at room temperature for 20–30 min till iodide **I** completely dissolved. To the solution obtained was added 0.62 g of nitrobenzene, and the reaction mixture was stirred for 20 min at 20°C. Then it was poured into 100 ml of ice water and washed with water solution of Na<sub>2</sub>SO<sub>3</sub>. The reaction product **II** was extracted into CH<sub>2</sub>Cl<sub>2</sub>, the extract was dried on CaCl<sub>2</sub>, the solvent was distilled off, and compound **II** was crystallized from ethanol. Yield 0.99 g (79%), mp 35–36°C (mp 36–37°C [7]).

## REFERENCES

- Adionlfi, M., Parrilli, M., Barone, G., Laonigro, G., and Man-goli, L., *Tetrahedron Lett.*, 1976, no. 40, pp. 3661–3663.
- 2. Smietana, M., Gouverneur, V., and Mioskowski, C., *Tetrahedron Lett.*, 2000, vol. 41, no. 1, pp. 193–195.
- Glover, S.A., Gussen, A., and Laue, H.A.H., J. S. Afr. Chem. Inst., 1973, vol. 26, no. 3, pp. 127–131.
- Gussen A., Loveloch J., Taljaard B., J. S. Afr. Chem. Inst., 1975, vol. 28, no. 2, pp. 235–240.
- 5. Gussen, A. and Taljaard, B., J. S. Afr. Chem. Inst., 1975, vol. 28, no. 2, pp. 196-214.
- Carreno, M.C., Carcia Ruano, J.L., Sanz, G., Toledo, M.A., and Urbano, A., *Tetrahedron Lett.*, 1996, vol. 37, no. 23, pp. 4081–4084.
- Olah, G.A., Qi Wang, Sandford, G., and Prakash, G.K.S., *J. Org. Chem.*, 1993, vol. 58, no. 11, pp. 3194–3195.
- Chaikovski, V.K., Kharlova, T.S., Filimonov, V.D., and Saryucheva T.A., *Synthesis*, 1999, no. 5, pp. 748–750.
- Chaikovskii, V.K., Kharlova, T.S., and Filimonov, V.D., *Izv. Russian Akad. Nauk, Ser. Khim.*, 1999, no. 7, pp. 1303–1306.
- Chaikovski, V.K., Filimonov, V.D., Yagovkin, A.Y., and Kharlova, T.S., *Tetrahedron Lett.*, 2000, vol. 41, no. 47, pp. 9101–9104.
- 11. Djerassi, C. and Lenk, C.N., J. Am. Chem. Soc., 1953, vol. 75, no. 14, pp. 3493-3495.
- 12. Fridman, A.L. and Novikov, S.S., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1977, no. 9, pp. 2058–2061.
- Gottardi, W., *Monatsh Chem.*, 1975, vol. 106, no. 4, pp. 1019–1025.